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We present the complete set of solutions of the coupled differential equations 
of the form (V a)2 = y(a),  V2a = ~ (a). Equations of this form appear in several 
physical situations. 

1. INTRODUCTION 

We study the equations 

a2+ a22+ a 2 = y (a )  (1.1a) 

O/11 + 0/22 "at- 0/33 = 6(0/)  (1.1b) 

where 0/1=00//0x 1, 0/11 =O20//Ox 2, etc., and y(0/) and 8(0/) are functions 
of 0/. 

Equations of this type occur in two cases, one in the special case of 
the nonlinear field equations for the chiral invariant model of pion dynamics 
studied by Ray (1978), and another in the special situation of the problem 
of the stability of a scalar soliton studied by Schiff (1982). Further, the form 
of the equations indicates that they may occur in other physical situations, 
too. Also, it is interesting to note that if 0/satisfies a set of coupled equations 
of the form (1.1), then any function of 0/ alsosatisfies a coupled equation 
of the form (1.1). For these reasons an attempt to get solutions of the 
equations (1.1) seems worthwhile. Some particular solutions were given by 
Ray and Schiff in the two cases. 

The coupled equations (1.1a) and (1.1b) can be equivalently written as 
2 2 2 O1+O2+O3=1  (1.1a') 

O 11 "+ O22-~-033 = Or(O) (lAb') 
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where 

O = f y-1/2 da (1.2a) 

and o'(O) is a function of  O, related to o- and y by the relation 

t7 = y-1/2( 6 -�89 (1.2b) 

In this paper we find the complete set of solutions of  the coupled equations 
(1.1a') and (lAb').  

2. SOLUTIONS 

Equation (1.1a') admits three classes of solutions, which as given in 
Forsyth (1906) are: 

( i )  O=Axld-Bx2d-Cx3d-O (2.1a) 

where D is an arbitrary constant and A, B, C are constants given by 

A 2 d  - BEd  - C 2 ----- 1 (2.1b) 

(ii) ~ =  axld-bx2d-cx3d-f(a, b) (2.2a) 

where f(a, b) is an arbitrary function and a, b, c are functions of x 1, x 2, 
and x 3 given by 

_ x l d a x 3  o f  (2.2b) 
c Oa 

_x2+bx3 = o f  (2.2c) 
c ob 

a 2 d -  b i d  - c 2 = 1 (2.2d) 

(iii) ~=px'd-qxi+mx3d-g(q) (2.3a) 

where g(q) is an arbitrary function and p, q, and m are functions of x 1, x 2, 
and x 3 given by 

p = h(q) (2.3b) 

dg + ( x l _ P  x3 ) dhd- dq \ q _ ~qq x2-qm x3=O (2.3c) 

p 2 d -  q 2 +  m 2 = 1 (2.3d) 

So our task is to choose the arbitrary constant D and arbitrary functions 
f and g (and so automatically evaluate each of A, B, C, a, b, c, p, q, rn) in 
such a way that equations (2.1), (2.2), and (2.3) separately satisfy (1.1b'). 
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Case i. Solution f rom (2.1). In this case, putt ing (2.1) into (1.1b'), we 
see that the solution is possible only if 

o- = 0 (2.4) 

In  that case the solution for  the coupled equat ions (1.1a') and (1.1b') exists 
only if o ' = 0  and that solution is given by (2.1) itself. 

Case ii. Solution f rom (2.2). Here, putting (2.2) in (1.1b'), one gets 
after little calculation 

(1 - X 2 - Y 2 ) [ f x x f Y r  - Z 2 / ( 1  - X 2 - r2 ) ]  

2 Z  - (1 - X 2 ) f x x  - (1 - y 2 ) f y y  + 2 X Y f x y  

and 

where 

and 

+ ( X f x  + Y f v )  - f  = F(~)) (2.5a) 

{9 = Z - X f x  - Y f y  + f (2.5b) 

F ( O )  = 1/o-({9) - | (2.5d) 

From (2.5a) and (2.5b) we get 

(1 - X 2 - Y 2 ) ( f x x f v y  - f x v )  - Z 2 

+ ( X f x  + Y f y  - f ) [ 2 Z ( 1  - X 2 ) f x x  - (1 - y 2 ) f g g  + 2 X Y f x y ]  

= E2Z - (1 - X 2 ) f x x  - (1 - r 2 ) f y y  + 2 x r f x y ] F ( Z -  xfx - Y f y  + f )  (2.6) 

where X, Y, Z are independent  variables and f is a funct ion o f  X and Y only. 
Since the r ight-hand side of  (2.6) is quadrat ic  in Z and the first term 

of  the left-hand side o f  (2.6) is linear in Z, it follows that 

F ( Z  - X f x  - Y f g  + f )  = - X ( z  - X f x  - r f g  + L)  (2.7) 

where L is a constant.  
Putting (2.7) back in (2.6) and equating the coefficients o f  Z and the 

terms free f rom Z separately to zero, one gets a pair  o f  equations,  

(1 - X 2 ) f x x  + (1 - y 2 ) f y y  _ 2 X Y f x y  = 2 ( X f x  + Y f y  - f  - 2L) (2.8a) 

(1 - X  2 -  Y 2 ) ( f x x f r Y  _ f 2 y )  = ( X f x  + Y f y  - f - 2 L )  (2.8b) 

Equat ions (2.8a) and (2.8b) can be t ransformed to 

(1 - r2)frr + -~  (foo + rfr) - 2(rfr - r - 2L) = 0 (2.9a) 

(1 - r2)[ - (rfo - f o ) 2 +  r2frr(foo + rfr)] = r4(rfr - f - 2 L )  2 (2.9b) 

X = a, Y = b, Z = x 3 / C  (2.5c) 
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where 

r2=X2d_ y2, tan 0=  Y / X  (2.9c) 

Combining equations (2.9a) and (2.9b), one gets 

(1 -r2)(rfro-fo)E+r4[rf~-f-2L-(1-r2)f~r]2=O (2.10) 

Since in view of (2.2d) and (2.5c), 1 - r 2 is positive, it follows from (2.10) that 

rfro-fo =0  (2.1 la) 

(1 - rE)frr -- rf~ + f +  2L -- 0 (2.1 lb) 

Solving (2.11a) and substituting it in (2.11b), we get 

f =  LIX + L2Y+ L3(1 - X  2- y2)I/2-2L 

as the solution of (2.8). 
Hence f(a, b) in (2.2a) is given by 

f(  a, b ) = LI a + L2b + L3( 1 - a 2 _ b 2 ) 1/2 _ 2L (2.12) 

where L1, L2, L3 and L are constants. 
Putting (2.12) into (2.2b) and (2.2c) and using (2.2d), we can find a, 

b, and c as functions of x 1, x 2, and x 3. Substituting these expressions for 
a, b, c, and (2.12) in (2.2a), we finally get the solution of the coupled 
equation (1.1a) and (1.1b') given by 

O=([(xl-[-Ll)2-b(x2.q-L2)2-b(xa-b L3)E]l/2-EL (2.13) 

where L1, L2, L3 and L are constants and tr is given by (2.5d). 

Case (iii). Solution from (2.3). Here, putting (2.3) in (1.1b'), one gets 

' x l +  - ~ q  (1-pZ-q2) ~/2 dq (1-p2-q2)~/2dq 2 

_ !  p_p_ dq (1 _pE_q2)l/2] x3 +d2g] 

l 1 1 

\~q] - +~q[(1-p2-qZ)l/2](q+P~q) (1_p2-_q2)'/2) 
1 

- o - ( O )  

and 

( ) ( ~= P-q~q  Xa+ (l_pfqqz)l/2dq 

(2.14a) 

1 __p2 \ dg 
~" (1_p2_-'~2)1/2)x3+g-q'-~q 

(2.14b) 
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If (2.14a) and (2.14b) are to hold simultaneously, the lhs of (2.14a) has to 
be a function of the rhs of (2.14b). If, instead of taking x 1, x 2, and x 3 as 
three independent variables we regard x 1, x 3, and q as three independent 
variables (where p is a function of q), it is easy to see that the lhs of (2.14a) 
can only be a linear function of (2.14b). Therefore 

1 
-- K I O W K 2  (2.15) o'(O) 

where K1 and K2 are constants. 
Since x 1, x 3, and q are independent, it follows from (2.14a), (2.14b), 

and (2.15) that 

d2p / dq 2 
p - q dp / dq 

= ---d-qq (1-p i - -qZ)  1/i dq 

dq (1 -p2-qZ) l / z  

[ e 
x (1-pZ-qZ)~/2~ ( l_p2  q2)~/2 

d2g/dq 2-  KzA1 

g - q dg/dq 

where 

p d2p 
(1 _ p 2 _  q2)1/2 dq 

4" Pq dp] --1 
(1-- p2-- q2)i/2 ~q j 

(2.16a) 

-(dp~2 q2)l/2](q-4-p~qq) (1_p2 q2)l/2 (2.16b) A,= \~qq] - l + ~ q  [ ( l - p 2 -  1 

and K2 is a constant. 
Equation (2.16a) is equivalently written as 

pqq (1 -p2  _2~/2 --t'l }qq 
(2.17a) p -  qpq (1 _ p 2 _  q2),/2_ q(1 _ p 2 _  ~2xL 1/2 tt]q 

and 

Pqq _ g q q  - K2A1 
p - qpq g -- qgq 

where pq =- dp/dg, pqq =- d2p/dq 2, etc. 
Solving (2.17a) and (2.17b), we obtain 

(1 _ p 2 _  q2)1/2 = K3p + K4q 

(2.17b) 

(2.18a) 
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and 

Al dq+ Ks) qpq -p  ~ ' 

where K2, K3, 14, Ks, and /s are constants and A 1 is given by (2.16b). 
Evaluating the integral on the right-hand side of (2.18b) with the use of 
(2.18a), one gets 

~p(K2+ 1)+ qK3K, 
g = K5 ~-q K2(K2+ K~+ 1)(K32+ l) ~ q--~32+~4T~+ 1 ~ 

{p(K2+I)+qK3K4.'~ 1 [ [p(K2+I)+qK3K4"~2]I 
-~ log  1+ +K6 x t a n - l \  q(g2+g2+l) 1/2 ,] ~ \ q - - ~ + - - g ' ~ l - - ~ ]  JJ  

(2.19) 

Substituting the expression for g from (2.19) into the equation (2.30) and 
using (2.18a), we obtain 

+ [K2(K2+K2+l)1/2(K~+l) 

xtan-1 ( [ (K2+l ) - (K2+K2+1_)q211 /2~+K5 ] 
+ q(K2+K2+lV2 ] 

x (K~ + 1) - {(K2+ K] + 1)q + K3K4[(K2+ 1) - (K32+ K2+ 1)q;] 1/2} 
x q2xl + (K~+ 1)q2[(K~ + 1) - (K32+ K ] +  1)q2]'/2x2:~ q2 

~: q2{ _ K3q(K~+ K ] +  1) + K3[(K~+ 1) -  (K~+ K~+ 1)q2]~/Z}x 3 = 0 
(2.20) 

Substituting the expression for g from (2.19) into (2.3a) and using (2.18a), 
one gets the complete solution of the equations (1.1a') and (1.1b') represen- 
ted by 

O = q(qK3K4{ - 1 + (K2+ 1)[(K32+ 1) - (K2+ K42+ 1)q2]} 

+ [(K32+ 1) - (K2+ K ] +  1)q2]~/2[+1 + (K2+ 1)(K32+ K2+ 1)qZ])x 1 

+ (K2+ 1)q2{1 ~: (K32+ 1)[(K2+ K2+ 1)q2]}x 2 

+ (K2+ 1)q2(K4 + [(K32+ 1) - (K~+ K2+ 1)q2]a/2{K3q(K2+ 1) 

+ K4[(K 32 + 1) - (K2+ K]+ 1)q211/2})x3+{-K3K4q :~ (K~+ 1) 

x [(K2+ 1) - (K2+ K ] +  1)q2] 1/2} - K2(K2 + 1)2(K~+ K2+ 1) 

x q log q + K6(K2 + 1)q (2.21) 

where K2, K3, K4, and K6 are all constants and q is given by (2.20) and 
~r is given by (2.15). 
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3. CONCLUSION 

In summary, we have obtained three types of  solutions of the coupled 
equations (1.1'). The first is given by (2.1), in which | is a function of 
Axe+ Bx2+ Cx 3, and the second type of solution is represented by (2.13), 
where O is a function of (xX+L~)2+(x2+L2)2+(x3+L3) 2 and A, B, C, L~, 
L2, and L3 are constants, These are the two types of solutions that could 
have been anticipated. But in (2.21) we find another type of solution which 
could not as easily have been anticipated, as the expression for O is 
formidable. 

Solutions of equation (1.1) can be obtained from the solution of 
equations (1.1') by using the relation (1.2a). We note that if t~ is any solution 
of (1.1'), then any function of a is a solution of (1.1'). These solutions can 
now be applied to the physical situations mentioned by Ray (1978) and 
Schiff (1982) and also possibly for other physical situations. 
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